
Ricker Robotic LLC Page 1

Model Driven
Development
Strategic advantage in software development

	

Introduction
Model	driven	development	(MDD)	is	a	software	development	approach	that	aims	at	creating	
software	from	domain-specific	models.	An	MDD	strategy	involves	tools,	but	it	is	more	than	
just	using	tools.	In	MDD	strategy,	tools	are	more	than	clever,	nice-to-have	side	efforts	to	the	
development	process.	Rather,	tools	are	a	conscious	strategic	effort	that	is	integral	to	the	
software	development	process.	MDD	strategy	embraces	tools	and	meta-programming	to	
achieve	strategic	objectives	and	strategic	advantages	in	software	development.	

Elements	of	MDD	
There	are	many	terms	similar	to	model	driven	development,	to	include:	domain	analysis,	
meta-modeling,	model-driven	generation,	template	languages	and	domain-driven	
framework	design.	Some	of	these	terms	are	a	synonymous	while	other	terms	indicate	a	
focus	on	a	particular	aspect	of	MDD.		

MDD	begins	with	a	domain	model,	a	conceptual	description	of	the	components	of	a	
category	or	domain	of	systems.	A	domain	can	be	any	sphere	of	knowledge	or	expertise,	such	
as	life	insurance,	equity	trading,	aircraft	manufacturing	or	hospital	patient	management.	A	
model	is	a	description	of	something	to	be	made.	Domain	models	use	the	language,	the	
terms,	phrases,	nouns	and	verbs,	specific	to	a	sphere	of	expertise.		The	domain	model	can	
also	be	called	a	meta-model,	because	it	is	the	model	of	models.	That	is,	the	domain	model	is	
the	basis	of	all	the	subsequent	models	that	developers	create.	

MDD	must	have	modeling	tools.	Without	tools	to	increase	productivity,	MDD	would	be	a	
burdensome	effort	rather	than	a	strategic	advantage.	These	tools	are	based	on	the	domain	
model.	Three	most	common	types	of	tools	are:	

1. Graphical	modeling	tools	

2. Domain	specific	languages	(DSL)	

3. Code	generators	

Graphical	modeling	tools	enable	developers	to	draw	diagrams,	boxes	and	arrows	usually,	to	
visually	express	models	of	systems.	A	domain	specific	language	(DSL)	enables	developers	to	
express	models	of	systems	in	text	that	is	easily	understandable	by	humans.	Depending	on	

Model Driven Development

Ricker Robotic LLC Page 2

the	application,	MDD	may	use	diagrams	or	DSL	or	both	together.	Code	generators	work	from	
the	graphical	and	DSL	models	to	create	functioning	software	code.	With	MDD,	developers	
are	writing	code	that	writes	code.	

The	Eclipse	open	source	community	
The	Eclipse	open	source	community	is	not	just	another	integrated	development	
environment	(IDE).	Prior	to	Eclipse,	developers	might	use	an	IDE	or	a	command	line	text	
editor.	Now	the	IDE	is	no	longer	optional.	Eclipse	has	become	an	integral	part	of	the	
software	development	process.	Because	Eclipse	is	so	easily	customized,	development	teams	
are	customize	Eclipse	to	integrate	with	their	development	process.	They	are	also	
unconsciously	customizing	their	development	process	to	integrate	with	Eclipse.	As	such,	it	is	
changing	the	software	development	process.		

MDD	is	quickly	moving	from	a	novel	concept	to	a	pragmatic	business	necessity	in	large	
corporations.	The	change	is	due	in	no	small	part	to	the	advent	of	the	open-source	Eclipse	
project.	Prior	to	Eclipse,	creating	tools	was	an	expensive	proposition.	One	needed	either	to	
build	the	entire	tool	set	from	scratch	or	to	commit	to	a	particular	vendor’s	proprietary	
solution.	Neither	choice	was	strategically	sound.	Now,	with	Eclipse,	the	best	tool	platform	
available	on	the	market	is	free	and	open	source.	More	importantly,	it	is	designed	with	the	
specific	intent	of	extending	and	customizing.	With	Eclipse,	creating	tools	is	relatively	
inexpensive.	

Strategic Objectives
There	are	several	common	strategic	objectives	for	using	MDD.	The	seven	most	common	
objectives	are	as	follows:	

1. Lower	the	overall	cost	of	building	large	internal	applications	

2. Speed	time	to	build	large	applications	

3. Lower	the	risk	of	large	applications	

4. Simplify	development	

5. Lower	the	required	skill	level	needed	to	work	on	large	applications	

6. Expand	the	pool	of	resources	that	can	work	on	large	applications	

7. Leverage	open	source	

The	first	three	objectives	should	sound	exceedingly	familiar.	What	organization	does	not	
claim	to	want	lower	costs,	faster	delivery	and	lower	risk?	The	other	four	objectives	may	
sound	new,	even	controversial.	Some	software	professionals	take	exception	to	the	objective	
of	lowering	the	skill	set	necessary	by	contributors.		Nevertheless,	these	objectives	are	
inherently	interdependent.		

Figure	1	shows	a	conceptual	graph	of	the	interdependencies	of	these	seven	strategic	
objectives.	The	business	strategist	Michael	Porter	used	these	sorts	of	diagrams	to	show	how	
certain	business	processes	gained	strategic	advantage	over	others.	In	order	to	replicate	the	

Model Driven Development

Ricker Robotic LLC Page 3

strategic	results,	a	competitor	must	replicate	the	entire	interdependency	of	processes.	The	
winning	company	becomes	as	strong	as	its	strongest	link.		

Figure 1 Seven objectives of model driven development

Using	open	source	lowers	the	risk	of	development	because	the	code	is	peer	reviewed	and	
developers	can	change	critical	bugs	themselves	if	necessary.	Using	open	source	provides	a	
large	talent	pool	to	draw	from	because	many	developers	have	experience	with	the	open	
source	or	they	can	quickly	learn	it.	Open	source	is	free,	so	there	is	a	direct	cost	savings.	

Having	a	larger	talent	pool	to	draw	from	lowers	risk	because	the	company	can	replace	
critical	developers	if	necessary.	Lowering	the	skill	of	developers	directly	increases	the	pool	of	
talent	to	draw	from.	The	simpler	something	is	to	learn,	the	more	people	there	will	be	that	
have	learned	it	or	can	learn	it.	In	a	free	market,	supply	and	demand	dictate	that	the	greater	
the	supply	the	lower	the	cost.	Thus,	lowering	the	required	skill	set	of	developers	lowers	the	
cost	of	the	developers	and	thus	lowers	the	overall	cost	of	the	project.	

Tools	should	simplifying	development.	If	development	is	simpler,	then	development	
requires	a	simpler	or	lower	skill	set.	Simplifying	makes	work	more	predictable	and	thus	
lowers	risk.	Simple	processes	are	quicker	to	execute,	so	simplifying	development	speeds	the	
time	of	development.		

Speeding	the	time	of	development	lowers	the	cost	because	cost	is	directly	attributed	to	
work	hours.	Speeding	development	also	lowers	risk	because	the	team	has	more	time	
available	to	react	to	problems	and	changes.		

Model Driven Development

Ricker Robotic LLC Page 4

Strategic advantages
In	pursuing	the	seven	strategic	objectives	of	MDD,	organizations	achieve	six	identifiable	
advantages.	The	implementation	of	MDD:	

1. Enables	scripters	to	contribute	to	enterprise	development	

2. Reduces	both	direct	and	indirect	development	efforts	

3. Increases	the	flexibility	of	reassigning	team	members	

4. Enables	task-oriented	management	of	development	

5. Enables	advanced	developers	to	focus	on	the	hard	stuff	

6. Manages	complexity	by	displacing	it	to	appropriate	points.	

These	six	advantages	are	concomitant	with	pursuing	the	seven	objectives.	Like	the	strategic	
objectives,	the	strategic	advantages	of	MDD	are	interdependent.	Figure	3	shows	
conceptually	how	these	six	advantages	reinforce	one	another.	

Figure 2 Linkages between tool advantages

We	will	discuss	each	of	these	advantages	in	sequence.	

Expand	the	talent	pool		
Consider	the	available	software	talent	pool	as	an	inverted	pyramid	like	the	one	shown	in	
Figure	3.	The	higher	tiers	are	dependent	upon	the	contributions	of	the	lower	tiers.	The	
higher	one	goes	up	the	inverted	pyramid,	the	more	common	and	less	expensive	the	skill	
level.	The	lower	one	goes	down	the	pyramid,	the	less	common	and	more	expensive	the	
skills.	At	the	bottom	are	hard	core	scientists	who	build	compilers	and	operating	systems.	
Next	up	are	engineers	who	understand	how	to	build	enterprise	strength	software.	Higher	up	
are	developers	who	are	competent	programmers,	but	do	not	necessarily	understand	or	

Model Driven Development

Ricker Robotic LLC Page 5

need	to	understand	advance	concepts	of	concurrency,	transactions	and	such.	At	the	top	of	
the	inverted	pyramid	are	scripters	who	can	write	XML,	JavaScript,	HTML	and	Java	methods.	

Figure 3 The inverted pyramid talent pool

The	supply	of	software	talent	becomes	tighter	with	each	year.	Companies	demand	more	and	
more	automation.	The	talent	pool	is	growing,	but	not	growing	as	fast	as	demand.	We	have	
to	import	talent	into	the	United	States.	We	have	nearly	consumed	the	capacity	of	India	to	
the	point	where	it	is	no	longer	the	cost	advantage	it	once	was.	We	have	expanded	off	
shoring	into	Eastern	Europe,	Southeast	Asia	and	China.	

MDD	enables	us	to	move	development	effort	higher	on	the	inverted	pyramid.	Through	
MDD,	scripters	can	contribute	to	enterprise	software	development.	

Reduce	coding	efforts	
MDD	generates	hundreds,	sometimes	thousands	of	lines	of	code	through	the	automated	
application	of	templates	to	models.	There	are	immediately	obvious	savings	to	generating	
redundant	code	rather	than	typing	it	out	by	hand	and	debugging	mistakes.	

What	is	not	immediately	obvious	is	how	much	is	saved	in	indirect	efforts.	The	templates	
define	much	of	what	would	otherwise	be	arbitrary	decisions	that	would	have	to	be	made	by	
individual	developers.	MDD	eliminates	a	great	deal	of	meetings	between	developers	to	
discuss	how	an	interface	is	implemented,	how	it	will	be	named,	and	how	it	will	integrate	
with	other	interfaces.	As	one	senior	engineer	stated,	

	“The	game	is	not	the	tool;	it’s	the	consistency.”	

MDD	enforces	consistency.	Arbitrary	decisions	that	have	to	be	made	are	made	once	and	
then	replicated.	

Reassign	team	members	
The	code	consistency	provided	by	MDD	enables	developers	to	cooperate	more	easily	and	
readily.		

• First,	much	of	the	significant	information	is	stored	in	the	models,	which	provide	an	
abstract	representation	that	is	easier	to	process	and	understand.		

Model Driven Development

Ricker Robotic LLC Page 6

• Second,	one	developer	can	easily	navigate	another	developer’s	code,	because	it	is	
organized	in	the	exact	same	manner	as	his	own.		

• Third,	exceptional	code	such	as	critical	business	logic	is	placed	in	predefined	locations	
that	are	easily	located	by	the	developers.	

All	these	factors	lead	to	the	flexibility	of	reassigning	team	members.	One	developer	can	pick	
up	where	another	left	off	due	to	vacation	or	sick	leave.	Extra	developers	can	be	moved	to	
sections	of	code	that	are	falling	behind	or	have	expanded	requirements.	

Agile	methodology	
Agile	development	methodology	relies	on	sound	tasking	of	developers.	The	development	
team	must	be	able	to	break	down	work	into	discrete	tasks	with	specific	estimates	of	effort.	If	
you	do	not	break	down	the	tasks	well,	then	you	cannot	manage	well.	

MDD	helps	with	task	break	down	in	three	ways.		

• First,	MDD	facilitates	working	top-down.	One	model	leads	to	sub-models	which	lead	to	
artifacts.		

• Second,	the	model	components	represent	a	predictable	set	of	artifacts	that	are	
generated	or	customized.		

• Third,	MDD	enforces	greater	consistency	that	enables	direct	comparison	of	time	and	
effort	across	tasks.	

In	one	project	I	saw,	the	MDD	tools	were	wizard	based.	The	wizards	walked	the	developer	
through	the	questions	and	then	generated	a	dozen	or	more	artifacts.	The	wizard	also	
generated	a	task	list	of	things	that	the	developer	had	to	complete	by	hand.	How	hard	would	
it	be	to	have	that	task	list	feed	into	an	agile	software	management	tool?		

Focus	on	the	hard	stuff	
The	initial	reaction	of	many	advanced	developers	to	MDD	is	negative.	Some	see	it	as	a	threat	
to	their	job.	Some	see	it	as	“dumbing-down”	their	work.	Some	see	it	as	tying	their	hands	and	
limiting	what	they	can	do.	Negative	initial	reactions	soon	dispel	as	the	advanced	developers	
begin	to	use	the	tools.	

MDD	tools	accelerate	development	and	increase	productivity	for	advanced	developers	as	
well.	In	MDD,	advance	developers	do	far	less	repetitive	typing	of	code.	They	focus	instead	on	
the	creative	aspects	of	their	work.	Most	advanced	developers	end	up	serving	one	or	more	of	
the	following	roles	in	an	MDD	effort:	

• Building	the	tools	themselves	

• Modifying	the	framework	to	implement	new	patterns	

• Mentoring	junior	developers	

• Serving	as	a	SWAT	force,	taking	on	the	particularly	hard	tasks	

Model Driven Development

Ricker Robotic LLC Page 7

Far	from	a	negative	experience,	MDD	makes	the	work	of	advanced	developers	even	more	
rewarding.	It	also	makes	their	work	more	valuable	to	the	organization.	

Manage	complexity		
Hurst's	Law	states:	

“Complexity	can	neither	be	created	nor	destroyed;	it	can	only	be	displaced.”	

One	might	also	call	Hurst's	Law	the	Law	of	Conservation	of	Complexity.	A	corollary	to	Hurst’s	
Law	would	be,	“Pay	attention	to	where	you	are	displacing	the	complexity.”	

Hurst's	Law	is	very	important	in	information	technology	where	new	technologies	claim	to	
“greatly	simplify”	a	complex	business	problem.	These	technologies	are	not	making	the	
problem	simpler;	they	are	instead	displacing	the	complexity	from	one	place	to	another.	The	
new	technology	is	beneficial	if	it	displaces	complexity	to	a	point	where	it	is	more	
manageable	than	it	was	before.	

If	an	organization	does	not	pay	attention	to	Hurst’s	Law,	then	its	information	technology	
efforts	can	devolve	into	a	game	of	“whack-a-mole”.	The	team	pushes	down	on	a	problem	
here	only	to	have	a	new	problem	pop	up	over	there.	

MDD	works	because	it	inherently	embraces	Hurst’s	Law.	The	pattern	developers	solve	the	
complex	part	once	and	place	it	in	the	shared	framework.	The	tool	developers	identify	the	
best	practice	once	and	incorporate	it	into	the	tools.		The	rest	of	the	developers	gain	access	
to	these	solutions	automatically	through	the	generated	code.	

Conclusion
MDD	strategy	embraces	tools	and	meta-programming	to	achieve	strategic	objectives	and	
strategic	advantages	in	software	development.	We	have	discussed	seven	common	strategic	
objectives	and	six	common	strategic	advantages	that	MDD	achieves.	We	have	also	discussed	
how	these	objectives	and	advantages	are	interdependent	and	reinforce	one	another.	

One	should	not	ignore	the	importance	of	the	open-source	Eclipse	project	in	achieving	the	
advantages	of	MDD.	Without	Eclipse,	large	companies	would	have	to	either	build	the	whole	
tool	set	themselves	or	tie	themselves	into	a	vendor’s	proprietary	solution.	Without	Eclipse,	
creating	the	tools	for	MDD	would	either	be	cost	prohibitive	or	strategically	impractical.		

The	strategic	objectives	and	advantages	of	MDD	are	very	compelling.	Many	large	companies	
have	already	begun	to	deploy	applications	built	using	MDD	techniques.	The	knowledge	of	
the	success	from	these	projects	is	spreading.	With	each	new	success,	MDD	proves	itself	to	
be	not	only	a	novel	concept	but	also	a	pragmatic	business	necessity.			

	

